If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x-345=0
a = 2; b = 8; c = -345;
Δ = b2-4ac
Δ = 82-4·2·(-345)
Δ = 2824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2824}=\sqrt{4*706}=\sqrt{4}*\sqrt{706}=2\sqrt{706}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{706}}{2*2}=\frac{-8-2\sqrt{706}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{706}}{2*2}=\frac{-8+2\sqrt{706}}{4} $
| -10y=7-9y | | -6=7x+8-7 | | x+1-1-(-2)=2+3-(1-x) | | -12=-32+4a | | (13x+5)+(20x-30)=180 | | 13=5x-5+3 | | 1/2y-3=19 | | -n+n=9 | | 91+4x=-2+x | | x/10=18/45 | | 5*4=10x | | A=5b=(-17) | | -19-8k=-3(2k+3) | | x/6+9=28 | | -3+6v=-39 | | .|8x+28|=32 | | 8n+15=6n+23 | | 4x+1+9x-3=-180 | | 1/2+x=11/2x | | 8-3d=5d | | 3(x+1)+4x+3=344 | | 6*m=10+m | | 19x+2+18x+9=180 | | 1/3f=18 | | A=5b=-17 | | 6x+12+3x+4=4x+36 | | 9/6=t/10 | | m-18=-25 | | 19x+2+18+9=180 | | -5(r+)=-67 | | 2x=18=3x-4 | | 55x8=100 |